
Fault Tolerant Variants

of the Fine-Grained

Parallel Incomplete LU

Factorization

Evan Coleman

NSWC - Dahlgren Division

Old Dominion University

ecole028@odu.edu

Masha Sosonkina

Old Dominion University

msosonki@odu.edu

Edmond Chow

Georgia Institute of

Technology

echow@cc.gatech.edu

mailto:ecole028@odu.edu
mailto:msosonki@odu.edu
mailto:echow@cc.gatech.edu

Acknowledgements

❖ This work was supported in part by:

❖ Air Force Office of Scientific Research under the AFOSR award FA9550-12-1-0476

❖ U.S. Department of Energy (DOE) Office of Advanced Scientific Computing

Research under the grant DE-SC-0016564 and through the Ames Laboratory,

operated by Iowa State University under contract No. DE-AC00-07CH11358

❖ U.S. Department of Defense High Performance Computing Modernization Program,

through a HASI grant

❖ ILIR/IAR program at NSWC Dahlgren

❖ Turing High Performance Computing cluster at Old Dominion University.

Outline

1. Introduction to the Fine-Grained Parallel Incomplete LU

factorization

2. Techniques for fault tolerance

3. Results

4. Future directions

Outline

1. Introduction to the Fine-Grained Parallel Incomplete LU

factorization

2. Techniques for fault tolerance

3. Results

4. Future directions

Fine-Grained Methods

❖ Can operate in synchronous environments or asynchronous environments

❖ May be better suited for computation on accelerators (i.e. GPUs)

❖ Allows for component level checking on accuracy of solution and existence of faults

❖ Focus area: Iterative methods in linear algebra

❖ Outline for fine-grained methods:
❖ Each component (or block of components) can be treated as a task

❖ It is able to be assigned to any given processor

❖ Each processor should be able to complete its current task without receiving new
information from other processors

❖ Information (possibly stale) may be required concerning the state of other components

Incomplete LU factorization

❖ Given a sparse matrix, 𝐴, compute factors 𝐿 and 𝑈 such that,

𝐴 ≈ 𝐿𝑈

❖ Define the sparsity pattern as,

𝑆 = {(𝑖, 𝑗)|𝑙𝑖𝑗 ≠ 0 or uij ≠ 0}

❖ Chow and Patel* make the observation that,

𝐿𝑈 𝑖𝑗 = 𝑎𝑖𝑗

for 𝑖, 𝑗 ∈ 𝑆

*Chow, E., and A. Patel. 2015. “Fine-grained parallel incomplete LU factorization”. SIAM

Journal on Scientific Computing vol. 37 (2), pp. C169–C193.

Incomplete LU factorization

❖ This allows for the components of the 𝐿 and 𝑈 factors to be solved for

iteratively

❖ In place of using a traditional Gaussian elimination style approach

❖ Make use of the constraint,

𝑘=1

min 𝑖,𝑗

𝑙𝑖𝑘𝑢𝑘𝑗 = 𝑎𝑖𝑗

for 𝑖, 𝑗 ∈ 𝑆. This gives |𝑆| unknowns and 𝑆 constraints.

Fine-Grained Parallel Incomplete LU Factorization

❖ Leads to two non-linear equations

1. 𝑙𝑖𝑗 =
1

𝑢𝑗𝑗
𝑎𝑖𝑗 − σ𝑘=1

𝑗−1
𝑙𝑖𝑗𝑢𝑘𝑗

2. 𝑢𝑖𝑗 = 𝑎𝑖𝑗 − σ𝑘=1
𝑖−1 𝑙𝑖𝑘𝑢𝑘𝑗

❖ These equations can be used to find the 𝑙𝑖𝑗 and 𝑢𝑖𝑗 components of 𝐿 and 𝑈 via a
fixed-point iteration,

𝑥𝑘+1 = 𝐺 𝑥𝑘

where 𝐺 captures the two equations above and an initial guess 𝑥0 is supplied

❖ Higher degree of parallelism: allows one thread to be assigned to update each
component

Outline

1. Introduction to the Fine-Grained Parallel Incomplete LU

factorization

2. Techniques for fault tolerance

3. Results

4. Future directions

Techniques

❖ Three techniques investigated

❖ Checkpointing

❖ Partial checkpointing

❖ Self-stabilizing periodic correction step

Checkpointing

❖ Need a mechanism that allows the program to determine if a fault has occurred

❖ Two residuals proposed and used in Chow and Patel* and Chow, Anzt, and Dongarra** to judge

the progression of the fixed-point iteration

❖ Nonlinear residual

𝜏 = 𝐴 − 𝐿𝑈 𝑆 𝐹
=

𝑖,𝑗 ∈𝑆

𝑎𝑖𝑗 −

𝑘=1

min 𝑖,𝑗

𝑙𝑖𝑘𝑢𝑘𝑗

2
1
2

❖ ILU residual

𝐴 − 𝐿𝑈
𝐹

*Chow, E., and A. Patel. 2015. “Fine-grained parallel incomplete LU factorization”. SIAM

Journal on Scientific Computing vol. 37 (2), pp. C169–C193.

**Chow, E., H. Anzt, and J. Dongarra. 2015. “Asynchronous iterative algorithm for computing incomplete

factorizations on GPUs”. In International Conference on High Performance Computing, pp. 1–16. Springer.

Checkpointing

❖ Typical progression – Apache2

Iteration (𝒌) Non-linear residual (𝝉) ILU Residual

1 1.05e+02 379.88

2 8.81e+01 376.74

3 2.38e+01 367.10

4 1.36e+01 366.70

5 2.39e+00 366.45

6 1.21e+00 366.45

7 5.24e-01 366.45

8 2.24e-02 366.45

9 1.05e-03 366.45

Checkpointing

❖ Obvious idea: Monitor the progression of the non-linear residual norm, and

declare a fault if 𝜏𝑘+𝑟 > 𝛼 ⋅ 𝜏𝑘

❖ Solution: If there is a fault, roll-back the entire factor(s) to the last known

good state

❖ Parameters:

❖ 𝛼: how strict to make the check

❖ 𝑟: how often to make the check

Partial Checkpointing

❖ Motivating goal: avoid rolling back the entire computed factors

❖ Idea: monitor the individual components, 𝜏𝑖𝑗, of the non-linear residual norm

𝜏𝑖𝑗 = 𝑎𝑖𝑗 −

𝑘=1

min 𝑖,𝑗

𝑙𝑖𝑘𝑢𝑘𝑗

❖ The individual non-linear residual norms are generally decreasing

❖ Examining component wise progression shows the progression is not monotonic

❖ To limit the number of false positive a check on the trend of the global non-linear

residual norm,
𝑑𝜏

𝑑𝑡
, is added

Partial Checkpointing

❖ If a fault is detected the number of components that are rolled back is limited

❖ The individual non-linear norm computation,

𝜏𝑖𝑗 = 𝑎𝑖𝑗 −

𝑘=1

min 𝑖,𝑗

𝑙𝑖𝑘𝑢𝑘𝑗

corresponds to portions of one row of 𝐿 and one column of 𝑈

❖ The entirety of the affected row and column are rolled back if a fault is detected

❖ Similar parameters to the first checkpointing scheme exist to determine the
frequency and sharpness of the fault detection mechanism

Self-Stabilizing

❖ Sao and Vuduc* proposed a self-stabilizing variant of the Conjugate Gradient

algorithm that uses a periodic correction step

❖ Principles:

❖ System will enter a valid state (no matter the initial state) in a finite number of

steps

❖ Uses the periodic correction step to restore sufficient conditions for convergence

❖ Eliminates the need for explicit fault detection

*Sao, P., and R. Vuduc. 2013. “Self-stabilizing iterative solvers”. In Proceedings of the

Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, pp. 4. ACM.

Self-Stabilizing

❖ Investigated the use of a periodic correction step to make the FGPILU

algorithm resilient to transient soft faults

❖ In order to develop a periodic correction step (with no explicit fault

detection) the performance of the FGPILU on the two dimensional

discretization of the Laplacian was examined

❖ In particular:

❖ Progression of the individual components

❖ Progression of the individual non-linear residual norms, 𝜏𝑖𝑗

❖ Progression of the global non-linear residual norm, 𝜏

Self-Stabilizing

❖ Developed a periodic correction step:

❖ Fine-grained

❖ No explicit error detection

❖ No communication needed between threads

❖ Based on checking:

❖ Size of the current component

❖ Relative change in the current component

❖ Note: does not generalize to all other problems

❖ Convergence through faults is not guaranteed

❖ Depends on the structure of the domain and the progression of the norm of the Jacobian

Outline

1. Introduction to the Fine-Grained Parallel Incomplete LU

factorization

2. Techniques for fault tolerance

3. Results

4. Future directions

Experiment set up

❖ Hardware/software set up:

❖ Turing HPC cluster at Old Dominion University

❖ Used a single Nvidia K40m Tesla GPU

❖ Made use of the MAGMA library for:

❖ Input/output routines

❖ Initial FGPILU implementation

❖ Linear solvers

❖ Problems

❖ 2D and 3D discretizations of the Laplacian

❖ 6 other problems from the University of Florida sparse matrix collection

❖ (same set of problems used in Chow, Anzt, and Dongarra*)

*Chow, E., H. Anzt, and J. Dongarra. 2015. “Asynchronous iterative algorithm for computing incomplete

factorizations on GPUs”. In International Conference on High Performance Computing, pp. 1–16. Springer.

Experiment set up

❖ To help improve convergence all problems were

❖ Re-ordered (Reverse Cuthill-Mckee)

❖ Scaled to have unit diagonal

❖ Transient soft faults injected using a perturbation-based methodology*

❖ Faults were injected on a single iteration of the fixed-point iteration to generate the incomplete LU factors

❖ Results were averaged over multiple runs

❖ Impacts on the preparation of the preconditioner and the effect of using the resultant preconditioner were
studied

❖ Note: to fully judge the impact of transient faults, the fixed-point iteration in the FGPILU algorithm was run
until the non-linear residual norm was excessively small

❖ Allows for a more complete look at the performance of the algorithm with respect to soft faults

❖ Artificially inflates timing results relative to traditional incomplete factorizations

Coleman, E., and M. Sosonkina. 2016. “Evaluating a Persistent Soft Fault Model on Preconditioned Iterative Methods”. In

Proceedings of the 22nd annual International Conference on Parallel and Distributed Processing Techniques and Applications.

❖ Success corresponds to a successful

solve of the linear system

❖ Both checkpointing variants seem to

be resilient to transient soft faults

❖ The self-stabilizing method works

well for the problem it was designed

for, but breaks down in the general

case

Results

Results

❖ Number of iterations for the linear

solver to converge using incomplete

LU factors from the different

variants discussed as a

preconditioner

❖ Note: only judged across

“successful” runs

Results

❖ Time (s) for the linear solver to

converge (including preconditioner

preparation) using incomplete LU

factors from the different variants

discussed as a preconditioner

❖ Note: only judged across

“successful” runs

Outline

1. Introduction to the Fine-Grained Parallel Incomplete LU

factorization

2. Techniques for fault tolerance

3. Results

4. Future directions

Summary and Future Directions

❖ This work:

❖ Presented some initial results showing possible strategies for fault tolerance of

the FGPILU algorithm

❖ In the future:

❖ Improve the performance of the developed techniques

❖ Expand on the self-stabilizing approach

❖ Apply the developed techniques to other fine-grained methods

❖ Work at generalizing results to a broader setting

Questions?

References

❖ Asanovic, K., R. Bodik, B. Catanzaro, J. Gebis, P.
Husbands, K. Keutzer, D. Patterson,W. Plishker, J. Shalf,
S.Williams et al. 2006. “The landscape of parallel
computing research: A view from Berkeley”. Technical
report, Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley.

❖ Bridges, P., K. Ferreira, M. Heroux, and M. Hoemmen.
2012. “Fault-tolerant linear solvers via selective
reliability”. arXiv preprint arXiv:1206.1390.

❖ Bronevetsky, G., and B. de Supinski. 2008. “Soft error
vulnerability of iterative linear algebra methods”. In
Proceedings of the 22nd annual international conference
on Supercomputing, pp. 155–164. ACM.

❖ Cappello, F., A. Geist, W. Gropp, S. Kale, B. Kramer, and
M. Snir. 2014. “Toward exascale resilience: 2014
update”. Supercomputing frontiers and innovations vol. 1
(1).

❖ Chow, E., H. Anzt, and J. Dongarra. 2015. “Asynchronous
iterative algorithm for computing incomplete
factorizations on GPUs”. In International Conference on
High Performance Computing, pp. 1–16. Springer.

❖ Chow, E., and A. Patel. 2015. “Fine-grained parallel
incomplete LU factorization”. SIAM Journal on Scientific
Computing vol. 37 (2), pp. C169–C193.

❖ Coleman, E., and M. Sosonkina. 2016a. “A Comparison
and Analysis of Soft-Fault Error Models using FGMRES”. In
Proceedings of the 6th annual Virginia Modeling,
Simulation, and Analysis Center Capstone Conference.
Virginia Modeling, Simulation, and Analysis Center.

❖ Coleman, E., and M. Sosonkina. 2016b. “Evaluating a
Persistent Soft Fault Model on Preconditioned Iterative
Methods”. In Proceedings of the 22nd annual
International Conference on Parallel and Distributed
Processing Techniques and Applications.

❖ Davis, TA 1994. “The University of Florida Sparse Matrix
Collection”.
http://www.cise.ufl.edu/research/sparse/matrices/

❖ Elliott, J., M. Hoemmen, and F. Mueller. 2015. “A
Numerical Soft Fault Model for Iterative Linear Solvers”.
In Proceedings of the 24nd International Symposium on
High-Performance Parallel and Distributed Computing.

❖ Frommer, A., and D. Szyld. 2000. “On asynchronous
iterations”. Journal of computational and applied
mathematics vol. 123 (1), pp. 201–216.

❖ Geist, A., and R. Lucas. 2009. “Major computer science
challenges at exascale”. International Journal of High
Performance Computing Applications.

❖ Innovative Computing Lab 2015. “Software distribution
of MAGMA”. http://icl.cs.utk.edu/magma/.

❖ Saad, Y. 2003. Iterative methods for sparse linear
systems. Siam.

❖ Sao, P., and R. Vuduc. 2013. “Self-stabilizing iterative
solvers”. In Proceedings of the Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems,
pp. 4. ACM.

❖ Snir, M., R.Wisniewski, J. Abraham, S. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al.
2014. “Addressing failures in exascale computing”.
International Journal of High Performance Computing
Applications.

http://www.cise.ufl.edu/research/sparse/matrices/

