1/
OLD DOMINION
UNIVERSITY

" modeling
»

simulation
visualization
engineering

OLD DOMINION UNIVERSITY

Fault Tolerant Variants
of the Fine-Grained

Parallel Incomplete LU
Factorization

Evan Coleman Masha Sosonkina Edmond Chow
NSWC - Dahlgren Division = Old Dominion University Georgia Institute of
Old Dominion University msosonki@odu.edu Technology

ecole028®@odu.edu echow@cc.gatech.edu

mailto:ecole028@odu.edu
mailto:msosonki@odu.edu
mailto:echow@cc.gatech.edu

Acknowledgements

< This work was supported in part by:
Air Force Office of Scientific Research under the AFOSR award FA9550-12-1-0476

U.S. Department of Energy (DOE) Office of Advanced Scientific Computing
Research under the grant DE-SC-0016564 and through the Ames Laboratory,
operated by lowa State University under contract No. DE-AC00-07CH11358

U.S. Department of Defense High Performance Computing Modernization Program,
through a HASI grant

ILIR/IAR program at NSWC Dahlgren
Turing High Performance Computing cluster at Old Dominion University.

1. Introduction to the Fine-Grained Parallel Incomplete LU
factorization

2. Techniques for fault tolerance
3. Results

4. Future directions

1. Introduction to the Fine-Grained Parallel Incomplete LU
factorization

2. Techniques for fault tolerance
3. Results

4. Future directions

Fine-Grained Methods

< Can operate in synchronous environments or asynchronous environments
< May be better suited for computation on accelerators (i.e. GPUs)
< Allows for component level checking on accuracy of solution and existence of faults

< Focus area: Iterative methods in linear algebra

Each component (or block of components) can be treated as a task
It is able to be assigned to any given processor

Each processor should be able to complete its current task without receiving new
information from other processors

Information (possibly stale) may be required concerning the state of other components

Incomplete LU factorization

< Given a sparse matrix, A, compute factors L and U such that,
A=LU

< Define the sparsity pattern as,

S = {(l,])llu #* 0 or Ujj 7 0}

< Chow and Patel* make the observation that,
(LU)i; = ay;

for (i,j) €S

Incomplete LU factorization

< This allows for the components of the L and U factors to be solved for
iteratively

In place of using a traditional Gaussian elimination style approach

< Make use of the constraint,
min(i,j)

z ligUgj = ayj

k=1

for (i,j) € S. This gives |S| unknowns and |S| constraints.

Fine-Grained Parallel Incomplete LU Factorization

< Leads to two non-linear equations
1 j—1
lij =— (al] D= ll]uk])
Ujj = al] Z llkuk]

< These equations can be used to find the [;; and u;; components of L and U via a
fixed-point iteration,
= G(x")

where G captures the two equations above and an initial guess x° is supplied

< Higher degree of parallelism: allows one thread to be assigned to update each
component

1. Introduction to the Fine-Grained Parallel Incomplete LU
factorization

2. Techniques for fault tolerance
3. Results

4. Future directions

< Three techniques investigated
Checkpointing
Partial checkpointing
Self-stabilizing periodic correction step

Checkpointing

< Need a mechanism that allows the program to determine if a fault has occurred

< Two residuals proposed and used in Chow and Patel* and Chow, Anzt, and Dongarra** to judge
the progression of the fixed-point iteration

Nonlinear residual

[. .. 2
min(i,j)
T = ||(A—LU)S||F= z (aij_ z likukj>

|
N =

ILU residual

Checkpointing

< Typical progression - Apache2

1 1.05e+02 379.88
2 8.81e+01 376.74
3 2.38e+01 367.10
4 1.36e+01 366.70
5 2.39e+00 366.45
6 1.21e+00 366.45
7 5.24e-01 366.45
8 2.24e-02 366.45
9 1.05e-03 366.45

Checkpointing

» Obvious idea: Monitor the progression of the non-linear residual norm, and
declare a fault if 7%*" > o - 7¥

< Solution: If there is a fault, roll-back the entire factor(s) to the last known
good state

s Parameters:
a: how strict to make the check
r: how often to make the check

Partial Checkpointing

< Motivating goal: avoid rolling back the entire computed factors

< Idea: monitor the individual components, 7;;, of the non-linear residual norm
min(i,j)

Tij = |a;j — Z Lig Uy

k=1

< The individual non-linear residual norms are generally decreasing
Examining component wise progression shows the progression is not monotonic
To limit the number of false positive a check on the trend of the global non-linear
residual norm, %, is added

Partial Checkpointing

< If a fault is detected the number of components that are rolled back is limited

< The individual non-linear norm computation,
min(i,j)

Tij = (@i — z Like Uk j

k=1

corresponds to portions of one row of L and one column of U
The entirety of the affected row and column are rolled back if a fault is detected

< Similar parameters to the first checkpointing scheme exist to determine the
frequency and sharpness of the fault detection mechanism

Self-Stabilizing

\/

< Sao and Vuduc® proposed a self-stabilizing variant of the Conjugate Gradient
algorithm that uses a periodic correction step

< Principles:

System will enter a valid state (no matter the initial state) in a finite number of
steps

Uses the periodic correction step to restore sufficient conditions for convergence
< Eliminates the need for explicit fault detection

Self-Stabilizing

< Investigated the use of a periodic correction step to make the FGPILU
algorithm resilient to transient soft faults

< In order to develop a periodic correction step (with no explicit fault
detection) the performance of the FGPILU on the two dimensional
discretization of the Laplacian was examined

In particular:
< Progression of the individual components
< Progression of the individual non-linear residual norms, t;;

< Progression of the global non-linear residual norm, t

Self-Stabilizing

< Developed a periodic correction step:
Fine-grained
No explicit error detection
No communication needed between threads

< Based on checking:
Size of the current component
Relative change in the current component

< Note: does not generalize to all other problems
Convergence through faults is not guaranteed
< Depends on the structure of the domain and the progression of the norm of the Jacobian

1. Introduction to the Fine-Grained Parallel Incomplete LU
factorization

2. Techniques for fault tolerance
3. Results

4. Future directions

Experiment set up

< Hardware/software set up:
Turing HPC cluster at Old Dominion University
< Used a single Nvidia K40m Tesla GPU
Made use of the MAGMA library for:
< Input/output routines
< Initial FGPILU implementation
< Linear solvers

< Problems
2D and 3D discretizations of the Laplacian
6 other problems from the University of Florida sparse matrix collection
< (same set of problems used in Chow, Anzt, and Dongarra*)

Experiment set up

< To help improve convergence all problems were
Re-ordered (Reverse Cuthill-Mckee)
Scaled to have unit diagonal

< Transient soft faults injected using a perturbation-based methodology*
Faults were injected on a single iteration of the fixed-point iteration to generate the incomplete LU factors
Results were averaged over multiple runs

R Impdacgs on the preparation of the preconditioner and the effect of using the resultant preconditioner were
studie

4

< Note: to fully judge the impact of transient faults, the fixed-point iteration in the FGPILU algorithm was run
until the non-linear residual norm was excessively small

Allows for a more complete look at the performance of the algorithm with respect to soft faults
Artificially inflates timing results relative to traditional incomplete factorizations

D)

Success corresponds to a successful
solve of the linear system

Both checkpointing variants seem to
be resilient to transient soft faults

The self-stabilizing method works
well for the problem it was designed
for, but breaks down in the general
case

Success Rate (%)

100

a0 r

80

for

60

50

40

30 r

20

o1

Success Rates For Each FGPILU Variant

o FT|
R crA
e
[_Iss

PAR THE

)

Number of iterations for the linear
solver to converge using incomplete
LU factors from the different
variants discussed as a
preconditioner

Note: only judged across
“successful” runs

PCG Iterations For Each FGPILU Variant

lterations

Bl c
I Faric
I Mo FT
Ccra
[dcp
[Iss

...

L2D L3D

Froblem

< Time (s) for the linear solver to 400
converge (including preconditioner
preparation) using incomplete LU
factors from the different variants
discussed as a preconditioner 250

)

< Note: only judged across =
“successful” runs

PCG Time For Each FGPILU Variant

APA

ECO

G3

Bl c
I Faric
I Mo FT
Ccra
[dcp
[_Jss

LD L3D
Froblem

OFF

PAR

THE

1. Introduction to the Fine-Grained Parallel Incomplete LU
factorization

2. Techniques for fault tolerance
3. Results

4. Future directions

Summary and Future Directions

< This work:
Presented some initial results showing possible strategies for fault tolerance of
the FGPILU algorithm

< In the future:
Improve the performance of the developed techniques

Expand on the self-stabilizing approach
Apply the developed techniques to other fine-grained methods

Work at generalizing results to a broader setting

Questions?

Asanovic, K., R. Bodik, B. Catanzaro, J. Gebis, P. >
Husbands, K. Keutzer, D. Patterson,W. Plishker, J. Shalf,
S.Williams et al. 2006. “The landscape of parallel
computing research: A view from Berkeley”. Technical
report, Technical Report UCB/EECS-2006-183, EECS o
Department, University of California, Berkeley. y

Bridges, P., K. Ferreira, M. Heroux, and M. Hoemmen.
2012. “Fault-tolerant linear solvers via selective
reliability”. arXiv preprint arXiv:1206.1390.

Bronevetsky, G., and B. de Supinski. 2008. “Soft error
vulnerability of iterative linear algebra methods”. In
Proceedings of the 22nd annual international conference
on Supercomputing, pp. 155-164. ACM.

Cappello, F., A. Geist, W. Gropp, S. Kale, B. Kramer, and <
M. Snir. 2014. “Toward exascale resilience: 2014
update”. Supercomputing frontiers and innovations vol. 1

).

°,
o

Chow, E., H. Anzt, and J. Dongarra. 2015. “Asynchronous
iterative algorithm for computing incomplete
factorizations on GPUs”. In International Conference on
High Performance Computing, pp. 1-16. Springer.

Chow, E., and A. Patel. 2015. “Fine-grained parallel o
incomplete LU factorization”. SIAM Journal on Scientific
Computing vol. 37 (2), pp. C169-C193.

Coleman, E., and M. Sosonkina. 2016a. “A Comparison <
and Analysis of Soft-Fault Error Models using FGMRES”. In
Proceedings of the 6th annual Virginia Modeling,
Simulation, and Analysis Center Capstone Conference.
Virginia Modeling, Simulation, and Analysis Center. A

Coleman, E., and M. Sosonkina. 2016b. “Evaluating a
Persistent Soft Fault Model on Preconditioned Iterative
Methods”. In Proceedings of the 22nd annual g
International Conference on Parallel and Distributed
Processing Techniques and Applications.

Davis, TA 1994. “The University of Florida Sparse Matrix
Collection”.
http://www.cise.ufl.edu/research/sparse/matrices/

Elliott, J., M. Hoemmen, and F. Mueller. 2015. “A *
Numerical Soft Fault Model for Iterative Linear Solvers”.

In Proceedings of the 24nd International Symposium on
High-Performance Parallel and Distributed Computing.

References

Frommer, A., and D. Szyld. 2000. “On asynchronous
iterations”. Journal of computational and applied
mathematics vol. 123 (1), pp. 201-216.

Geist, A., and R. Lucas. 2009. “Major computer science
challenges at exascale”. International Journal of High
Performance Computing Applications.

Innovative Computing Lab 2015. “Software distribution
of MAGMA”. http://icl.cs.utk.edu/magma/.

Saad, Y. 2003. Iterative methods for sparse linear
systems. Siam.

Sao, P., and R. Vuduc. 2013. “Self-stabilizing iterative
solvers”. In Proceedings of the Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems,
pp. 4. ACM.

Snir, M., R.Wisniewski, J. Abraham, S. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al.
2014. “Addressing failures in exascale computing”.
International Journal of High Performance Computing
Applications.

http://www.cise.ufl.edu/research/sparse/matrices/

