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Fine-Grained Methods

< Can operate in synchronous environments or asynchronous environments
< May be better suited for computation on accelerators (i.e. GPUs)
< Allows for component level checking on accuracy of solution and existence of faults

< Focus area: Iterative methods in linear algebra

Each component (or block of components) can be treated as a task
It is able to be assigned to any given processor

Each processor should be able to complete its current task without receiving new
information from other processors

Information (possibly stale) may be required concerning the state of other components



Incomplete LU factorization

< Given a sparse matrix, A, compute factors L and U such that,
A=LU

< Define the sparsity pattern as,

S = {(l,])llu #* 0 or Ujj 7 0}

< Chow and Patel* make the observation that,
(LU)i; = ay;

for (i,j) €S



Incomplete LU factorization

< This allows for the components of the L and U factors to be solved for
iteratively

In place of using a traditional Gaussian elimination style approach

< Make use of the constraint,
min(i,j)

z ligUgj = ayj

k=1

for (i,j) € S. This gives |S| unknowns and |S| constraints.



Fine-Grained Parallel Incomplete LU Factorization

< Leads to two non-linear equations
1 j—1
lij =— (al] D= ll]uk])
Ujj = al] Z llkuk]

< These equations can be used to find the [;; and u;; components of L and U via a
fixed-point iteration,
= G(x")

where G captures the two equations above and an initial guess x° is supplied

< Higher degree of parallelism: allows one thread to be assigned to update each
component
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< Three techniques investigated
Checkpointing
Partial checkpointing
Self-stabilizing periodic correction step



Checkpointing

< Need a mechanism that allows the program to determine if a fault has occurred

< Two residuals proposed and used in Chow and Patel* and Chow, Anzt, and Dongarra** to judge
the progression of the fixed-point iteration

Nonlinear residual

[ . .. 2
min(i,j)
T = ||(A—LU)S||F= z (aij_ z likukj>

|
N =

ILU residual



Checkpointing

< Typical progression - Apache2

1 1.05e+02 379.88
2 8.81e+01 376.74
3 2.38e+01 367.10
4 1.36e+01 366.70
5 2.39e+00 366.45
6 1.21e+00 366.45
7 5.24e-01 366.45
8 2.24e-02 366.45
9 1.05e-03 366.45



Checkpointing

» Obvious idea: Monitor the progression of the non-linear residual norm, and
declare a fault if 7%*" > o - 7¥

< Solution: If there is a fault, roll-back the entire factor(s) to the last known
good state

s Parameters:
a: how strict to make the check
r: how often to make the check



Partial Checkpointing

< Motivating goal: avoid rolling back the entire computed factors

< Idea: monitor the individual components, 7;;, of the non-linear residual norm
min(i,j)

Tij = |a;j — Z Lig Uy

k=1

< The individual non-linear residual norms are generally decreasing
Examining component wise progression shows the progression is not monotonic
To limit the number of false positive a check on the trend of the global non-linear
residual norm, %, is added



Partial Checkpointing

< If a fault is detected the number of components that are rolled back is limited

< The individual non-linear norm computation,
min(i,j)

Tij = (@i — z Like Uk j

k=1

corresponds to portions of one row of L and one column of U
The entirety of the affected row and column are rolled back if a fault is detected

< Similar parameters to the first checkpointing scheme exist to determine the
frequency and sharpness of the fault detection mechanism



Self-Stabilizing

\/

< Sao and Vuduc® proposed a self-stabilizing variant of the Conjugate Gradient
algorithm that uses a periodic correction step

< Principles:

System will enter a valid state (no matter the initial state) in a finite number of
steps

Uses the periodic correction step to restore sufficient conditions for convergence
< Eliminates the need for explicit fault detection



Self-Stabilizing

< Investigated the use of a periodic correction step to make the FGPILU
algorithm resilient to transient soft faults

< In order to develop a periodic correction step (with no explicit fault
detection) the performance of the FGPILU on the two dimensional
discretization of the Laplacian was examined

In particular:
< Progression of the individual components
< Progression of the individual non-linear residual norms, t;;

< Progression of the global non-linear residual norm, t



Self-Stabilizing

< Developed a periodic correction step:
Fine-grained
No explicit error detection
No communication needed between threads

< Based on checking:
Size of the current component
Relative change in the current component

< Note: does not generalize to all other problems
Convergence through faults is not guaranteed
< Depends on the structure of the domain and the progression of the norm of the Jacobian
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Experiment set up

< Hardware/software set up:
Turing HPC cluster at Old Dominion University
< Used a single Nvidia K40m Tesla GPU
Made use of the MAGMA library for:
< Input/output routines
< Initial FGPILU implementation
< Linear solvers

< Problems
2D and 3D discretizations of the Laplacian
6 other problems from the University of Florida sparse matrix collection
< (same set of problems used in Chow, Anzt, and Dongarra*)



Experiment set up

< To help improve convergence all problems were
Re-ordered (Reverse Cuthill-Mckee)
Scaled to have unit diagonal

< Transient soft faults injected using a perturbation-based methodology*
Faults were injected on a single iteration of the fixed-point iteration to generate the incomplete LU factors
Results were averaged over multiple runs

R Impdacgs on the preparation of the preconditioner and the effect of using the resultant preconditioner were
studie

4

< Note: to fully judge the impact of transient faults, the fixed-point iteration in the FGPILU algorithm was run
until the non-linear residual norm was excessively small

Allows for a more complete look at the performance of the algorithm with respect to soft faults
Artificially inflates timing results relative to traditional incomplete factorizations

D)



Success corresponds to a successful
solve of the linear system

Both checkpointing variants seem to
be resilient to transient soft faults

The self-stabilizing method works
well for the problem it was designed
for, but breaks down in the general
case
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)

Number of iterations for the linear
solver to converge using incomplete
LU factors from the different
variants discussed as a
preconditioner

Note: only judged across
“successful” runs
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< Time (s) for the linear solver to 400
converge (including preconditioner
preparation) using incomplete LU
factors from the different variants
discussed as a preconditioner 250

)

< Note: only judged across =
“successful” runs
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Summary and Future Directions

< This work:
Presented some initial results showing possible strategies for fault tolerance of
the FGPILU algorithm

< In the future:
Improve the performance of the developed techniques

Expand on the self-stabilizing approach
Apply the developed techniques to other fine-grained methods

Work at generalizing results to a broader setting



Questions?
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